Observational studies have recently received significant attention from the machine learning community due to the increasingly available non-experimental observational data and the limitations of the experimental studies, such as considerable cost, impracticality, small and less representative sample sizes, etc. In observational studies, de-confounding is a fundamental problem of individualised treatment effects (ITE) estimation. This paper proposes disentangled representations with adversarial training to selectively balance the confounders in the binary treatment setting for the ITE estimation. The adversarial training of treatment policy selectively encourages treatment-agnostic balanced representations for the confounders and helps to estimate the ITE in the observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets, with varying degrees of confounding, prove that our proposed approach improves the state-of-the-art methods in achieving lower error in the ITE estimation.
translated by 谷歌翻译
在电子健康记录(EHRS)中,不规则的时间序列(ITS)自然发生,这是由于患者健康动态而自然发生,这是由于医院不规则的探访,疾病/状况以及每次访问时测量不同生命迹象的必要性。其目前的培训挑战机器学习算法主要建立在相干固定尺寸特征空间的假设上。在本文中,我们提出了一种新型的连续患者状态感知器模型,称为铜,以应对其在EHR中。铜使用感知器模型和神经普通微分方程(ODE)的概念来学习患者状态的连续时间动态,即输入空间的连续性和输出空间的连续性。神经ODES可以帮助铜生成常规的时间序列,以进食感知器模型,该模型具有处理多模式大规模输入的能力。为了评估所提出的模型的性能,我们在模仿III数据集上使用院内死亡率预测任务,并仔细设计实验来研究不规则性。将结果与证明所提出模型的功效的基准进行了比较。
translated by 谷歌翻译
在几个真实的世界应用中,部署机器学习模型以使数据对分布逐渐变化的数据进行预测,导致火车和测试分布之间的漂移。这些模型通常会定期在新数据上重新培训,因此他们需要概括到未来的数据。在这种情况下,有很多关于提高时间概括的事先工作,例如,过去数据的连续运输,内核平滑时间敏感参数,最近,越来越多的时间不变的功能。但是,这些方法共享了几个限制,例如可扩展性差,培训不稳定,以及未来未标记数据的依赖性。响应上述限制,我们提出了一种简单的方法,该方法以时间敏感的参数开头,但使用梯度插值(GI)丢失来规则地规则化其时间复杂度。 GI允许决策边界沿着时间改变,并且仍然可以通过允许特定于时间的改变来防止对有限训练时间快照的过度接种。我们将我们的方法与多个实际数据集的现有基线进行比较,这表明GI一方面优于更加复杂的生成和对抗方法,另一方面更简单地梯度正则化方法。
translated by 谷歌翻译
We address the problem of extracting key steps from unlabeled procedural videos, motivated by the potential of Augmented Reality (AR) headsets to revolutionize job training and performance. We decompose the problem into two steps: representation learning and key steps extraction. We employ self-supervised representation learning via a training strategy that adapts off-the-shelf video features using a temporal module. Training implements self-supervised learning losses involving multiple cues such as appearance, motion and pose trajectories extracted from videos to learn generalizable representations. Our method extracts key steps via a tunable algorithm that clusters the representations extracted from procedural videos. We quantitatively evaluate our approach with key step localization and also demonstrate the effectiveness of the extracted representations on related downstream tasks like phase classification. Qualitative results demonstrate that the extracted key steps are meaningful to succinctly represent the procedural tasks.
translated by 谷歌翻译
Multiple studies have focused on predicting the prospective popularity of an online document as a whole, without paying attention to the contributions of its individual parts. We introduce the task of proactively forecasting popularities of sentences within online news documents solely utilizing their natural language content. We model sentence-specific popularity forecasting as a sequence regression task. For training our models, we curate InfoPop, the first dataset containing popularity labels for over 1.7 million sentences from over 50,000 online news documents. To the best of our knowledge, this is the first dataset automatically created using streams of incoming search engine queries to generate sentence-level popularity annotations. We propose a novel transfer learning approach involving sentence salience prediction as an auxiliary task. Our proposed technique coupled with a BERT-based neural model exceeds nDCG values of 0.8 for proactive sentence-specific popularity forecasting. Notably, our study presents a non-trivial takeaway: though popularity and salience are different concepts, transfer learning from salience prediction enhances popularity forecasting. We release InfoPop and make our code publicly available: https://github.com/sayarghoshroy/InfoPopularity
translated by 谷歌翻译
The lack of any sender authentication mechanism in place makes CAN (Controller Area Network) vulnerable to security threats. For instance, an attacker can impersonate an ECU (Electronic Control Unit) on the bus and send spoofed messages unobtrusively with the identifier of the impersonated ECU. To address the insecure nature of the system, this thesis demonstrates a sender authentication technique that uses power consumption measurements of the electronic control units (ECUs) and a classification model to determine the transmitting states of the ECUs. The method's evaluation in real-world settings shows that the technique applies in a broad range of operating conditions and achieves good accuracy. A key challenge of machine learning-based security controls is the potential of false positives. A false-positive alert may induce panic in operators, lead to incorrect reactions, and in the long run cause alarm fatigue. For reliable decision-making in such a circumstance, knowing the cause for unusual model behavior is essential. But, the black-box nature of these models makes them uninterpretable. Therefore, another contribution of this thesis explores explanation techniques for inputs of type image and time series that (1) assign weights to individual inputs based on their sensitivity toward the target class, (2) and quantify the variations in the explanation by reconstructing the sensitive regions of the inputs using a generative model. In summary, this thesis (https://uwspace.uwaterloo.ca/handle/10012/18134) presents methods for addressing the security and interpretability in automotive systems, which can also be applied in other settings where safe, transparent, and reliable decision-making is crucial.
translated by 谷歌翻译
Warning: this paper contains content that may be offensive or upsetting. In the current context where online platforms have been effectively weaponized in a variety of geo-political events and social issues, Internet memes make fair content moderation at scale even more difficult. Existing work on meme classification and tracking has focused on black-box methods that do not explicitly consider the semantics of the memes or the context of their creation. In this paper, we pursue a modular and explainable architecture for Internet meme understanding. We design and implement multimodal classification methods that perform example- and prototype-based reasoning over training cases, while leveraging both textual and visual SOTA models to represent the individual cases. We study the relevance of our modular and explainable models in detecting harmful memes on two existing tasks: Hate Speech Detection and Misogyny Classification. We compare the performance between example- and prototype-based methods, and between text, vision, and multimodal models, across different categories of harmfulness (e.g., stereotype and objectification). We devise a user-friendly interface that facilitates the comparative analysis of examples retrieved by all of our models for any given meme, informing the community about the strengths and limitations of these explainable methods.
translated by 谷歌翻译
We address the problem of few-shot classification where the goal is to learn a classifier from a limited set of samples. While data-driven learning is shown to be effective in various applications, learning from less data still remains challenging. To address this challenge, existing approaches consider various data augmentation techniques for increasing the number of training samples. Pseudo-labeling is commonly used in a few-shot setup, where approximate labels are estimated for a large set of unlabeled images. We propose DiffAlign which focuses on generating images from class labels. Specifically, we leverage the recent success of the generative models (e.g., DALL-E and diffusion models) that can generate realistic images from texts. However, naive learning on synthetic images is not adequate due to the domain gap between real and synthetic images. Thus, we employ a maximum mean discrepancy (MMD) loss to align the synthetic images to the real images minimizing the domain gap. We evaluate our method on the standard few-shot classification benchmarks: CIFAR-FS, FC100, miniImageNet, tieredImageNet and a cross-domain few-shot classification benchmark: miniImageNet to CUB. The proposed approach significantly outperforms the stateof-the-art in both 5-shot and 1-shot setups on these benchmarks. Our approach is also shown to be effective in the zero-shot classification setup
translated by 谷歌翻译
Federated Learning (FL) is a machine learning paradigm that enables the training of a shared global model across distributed clients while keeping the training data local. While most prior work on designing systems for FL has focused on using stateful always running components, recent work has shown that components in an FL system can greatly benefit from the usage of serverless computing and Function-as-a-Service technologies. To this end, distributed training of models with severless FL systems can be more resource-efficient and cheaper than conventional FL systems. However, serverless FL systems still suffer from the presence of stragglers, i.e., slow clients due to their resource and statistical heterogeneity. While several strategies have been proposed for mitigating stragglers in FL, most methodologies do not account for the particular characteristics of serverless environments, i.e., cold-starts, performance variations, and the ephemeral stateless nature of the function instances. Towards this, we propose FedLesScan, a novel clustering-based semi-asynchronous training strategy, specifically tailored for serverless FL. FedLesScan dynamically adapts to the behaviour of clients and minimizes the effect of stragglers on the overall system. We implement our strategy by extending an open-source serverless FL system called FedLess. Moreover, we comprehensively evaluate our strategy using the 2nd generation Google Cloud Functions with four datasets and varying percentages of stragglers. Results from our experiments show that compared to other approaches FedLesScan reduces training time and cost by an average of 8% and 20% respectively while utilizing clients better with an average increase in the effective update ratio of 17.75%.
translated by 谷歌翻译
我们解决了在室内环境中对于具有有限感应功能和有效载荷/功率限制的微型航空车的高效3-D勘探问题。我们开发了一个室内探索框架,该框架利用学习来预测看不见的区域的占用,提取语义特征,样本观点,以预测不同探索目标的信息收益以及计划的信息轨迹,以实现安全和智能的探索。在模拟和实际环境中进行的广泛实验表明,就结构化室内环境中的总路径长度而言,所提出的方法的表现优于最先进的勘探框架,并且在勘探过程中的成功率更高。
translated by 谷歌翻译